PS:很抱歉,昨天有事没更,今天补上!!
“第八道题:说从前啊,有一个富人,他有30个孩子,其中15个是已故的前妻所生,其余15个是继室所生,这后一个妇人很想让她自己所生的最年长的儿子继承财产,于是,有一天,他就向他说:“亲爱的丈夫啊,你就要老了,我们应该定下来谁将是你的继承人,让我们把我们的30个孩子排成一个圆圈,从他们中的一个数起,每逢到10就让那个孩子站出去,直到最后剩下哪个孩子,哪个孩子就继承你的财产吧!”富人一想,呵呵,这个题意相当有内涵了,不错,仿佛很公平,就这么办吧~不过,当剔选过程不断进行下去的时候,这个富人傻眼了,他发现前14个被剔除的孩子都是前妻生的,而且下一个要被剔除的还是前妻生的,富人马上大手一挥,停,现在从这个孩子倒回去数,继室,就是这个歹毒的后妈一想,倒数就倒数,我15个儿子还斗不过你一个啊~她立即同意了富人的动议,你猜,到底谁做了继承人呢?”
“老婆的儿子”凌风回答问题的速度越来越快。
“第九道题:有十瓶药,每瓶里都装有100片药(仿佛现在装一百片的少了,都是十片二十片的,不管,咱们就这么来了),其中有八瓶里的药每片重10克,另有两瓶里的药每片重9克。用一个蛮精确的小秤,只称一次,如何找出份量较轻的那两个药瓶”
“等同54,但此题有一些变化,与众不同的瓶子有两个,只称一次的话,只能得到两个瓶子所缺的克数的总和,我们必须保证能从总和中唯一地得出两个瓶子的所缺数。第一个瓶可拿出1片,第二个拿2片,第三个拿3片,但第四个不能拿4片,因为如果结果缺了5克的话,你就不知道是缺了2+3还是1+4。所以第四个应拿5片,第五个应拿8片,第n个应拿a(n-1)+a(n-2)片。我说,你从哪里找到的这种题啊”凌风郁闷的问神秘人。
“不可能不可能,这种是远古之神的语言,他怎么会说出来呢?奇怪啊,奇怪啊”神秘人稀奇的自语道。
“我说,你这是哪里的题啊”凌风不耐烦的问道。
“这些都是远古时期众神的语言”神秘人严肃的说。
“什么,远古时期,还众神”凌风问道。
“是的”神秘人严肃的说。
“听好了”
“第十道题:有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?”
“设总距离为d,总共用时d/(15+20),两车相遇,所以鸟飞了30*d/(15+20)=6d/7,小鸟飞行两地距离的6/7。喂,我说你们的诸神还有火车,你知道那是什么么?”
“据说,火车是一个非常先进的交通工具,他不用消耗魔法……等等,现在是考你的,注意听题。”
“第十一道题:你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?”
“一个罐子放1红,一个罐子放49红和50蓝,这样得到红球的概率接近75%。”凌风黑随意的答道。
“第十二道题:你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1,只称量一次,如何判断哪个罐子的药被污染了?”
“号罐取一个药片,2号罐取两个药片,3号罐取3个药片,4号罐取4个药片”
“第十三道题:两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?”
“把大圆剪断拉直。小圆绕大圆圆周一周,就变成从直线的一头滚至另一头。因为直线长就是大圆的周长,是小圆周长的2倍,所以小圆要滚动2圈。
但是现在小圆不是沿直线而是沿大圆滚动,小圆因此还同时作自转,当小圆沿大圆滚动1周回到原出发点时,小圆同时自转1周。当小圆在大圆内部滚动时自转的方向与滚动的转向相反,所以小圆自身转了1周。当小圆在大圆外部滚动时自转的方向与滚动的转向相同,所以小圆自身转了3周。”
“第十四道题:有3顶红帽子,4顶黑帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为什么?”
“最前面的那个人听见后面两个人都说了“不知道”,他假设自己戴的是白帽子,于是中间那个人就看见他戴的白帽子。那么中间那个人会作如下推理:“假设我戴了白帽子,那么最后那个人就会看见前面两顶白帽子,但总共只有两顶白帽子,他就应该明白他自己戴的是黑帽子,现在他说不知道,就说明我戴了白帽子这个假定是错的,所以我戴了黑帽子。”问题是中间那人也说不知道,所以最前面那个人知道自己戴白帽子的假定是错的,所以他推断出自己戴了黑帽子。”
“第十五道题:假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?”
“拿出4个,然后按照6的倍数和另外一人分别拿球。即另外一人拿1个,我拿5个。另外一人拿2个,我拿4个。另外一人拿3个,我拿3个。另外一人拿4个,我拿2个。另外一人拿5个,我拿1个。最终100个在我手上。首先拿4个别人拿n个你就拿6-n个”
“我疯了,你怎么可能打得出来”神秘人大怒到快崩溃了。
“我怎么就不能答出来啦,快点出题”凌风略带不削的说。